CS-200
Computer Architecture

Part 5¢. Multiprocessors
Memory Consistency

Paolo lenne

<paolo.ienne@epfl.ch>

Some slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Reinhardt, Smith, and Singh
of University of lllinois, EPFL, Carnegie Mellon University, University of Wisconsin, Duke University, University of Michigan, and Princeton University

Coherence? Consistency?

Informally:

e Coherence

— What values should be returned by a set of reads and writes to a single address
— An issue of data integrity: if violated, | get wrong data

* Consistency
— When written values will be returned by reads to multiple addresses

— Not an issue of data integrity: data are correct from the perspective of single processors, but
observations from different processors may show different orderings and contradict the
expectations of the programmer

Examples in the following will help clarify the distinction...

What about Consistency?

Processor or Processor or
Thread #1 Thread #2
A =0; B =0;
A=1; B =1;
if (B==0) .. if (A== 0)

Can both tests be true? Not really...

Note that this is not a problem of accesses to a single location (coherence) but of the interaction of
several accesses to more than one location

It is also the problem of when a new value must be visible

Ideally: Strict Consistency

* Everything happens in memory exactly in the order it has been issued

WR WR RD
CPU 1 a=o A=1 B =0

i —— >

: WR WR : RD
CPU 2 B =0 B=1 A == 0?

i i | >

Mem 5

OO O O O O >

 Butin any distributed system is (virtually) impossible to obtain a global time, hence
let’s forget about it...

More Practical: Sequential Consistency

Sequential Consistency: the result of any execution is as if
* the operations of each individual processor were executed the order specified by its program, and
* the operations of the different processors were arbitrarily interleaved

Note that this is sufficient to
maintain the intuition that A

/ and B cannot be 0 at once
WR WR RD
CPU1 A=0 A=1 B == 07?

] — jo — \ >
WR WR RD
CPU 2 B=0 B =1 : ' A == 0?
| _;. - >
Mem -
-0 o0 O @ >

Sequential Consistency

Memory

U

C

Do they?!

Processors load and store in program order]
Access to memory are atomic (no other memory operation is started while the previous has not

completed)
After every memory operation, the switch is randomly changed

Ordering?

Instruction Computation advances independently
Fetch & Decode from machine state updates
Unit
Reservation | | Reservation | | Reservation ‘ Reservation Cg Stores
: ' ' - ') in order
Register File
ALU FP Unit Branch Load/Store B g
Unit Unit
\ y N
Commit C><‘ §
Unit
Machine state is

updated in order

Reordering Instructions

at Writeback
from from EUs
F&D Unit 1 l l l l
Excpt. PC Tag Register Address Value
0
0
head to MEM
0 [0x1000 0004 $£3 0x627f bada —— _ ik
1 |0x1000 0008 | MEM1 0xa87f b351 ?22? \
0 [0x1000 000c| MUL2 | $£5 1‘ ?227? The result,
_ once available
ta|I= O

\ The destination in memory

of the result

Actual Memory Path

Memory accesses
are out of order

Loads are performed immediately
(no change in the architectural state)

CPU

Reorder

Buffer

Stores are performed in program order
(they do change the architectural state)

* |sthere a mistake? Yes, we have badly violated consistency even on a uniprocessor: the relative order of
read and writes is now possibly wrong!

(Correct) Actual Memory Path

Memory accesses

are still out of order
Loads are performed immediately

but we must associatively check in the ROB
that there are no new stores pending!

CPU

Reorder
Buffer

* Now we do honour RAW dependencies and uniprocessor consistency is correctly implemented
» Still, other processors do not have such a bypass...
* Uniprocessor memory accesses out of order = no sequential consistency

Dependences through Memory

The way we detect and resolve dependences through memory (a store at
some address and a subsequent load from the same address) is the same as

for reglsters Implements the multiplexer in

[For every load, check the ROB:P the slide before
a) If there is no store to the same address in the ROB, get the value from

memory (i.e., from the cache)
b) If thereis a store to the same address in the ROB, either get the value (if
ready) or the tag
but there is an additional situation now
c) If thereis a store to an unknown address in the ROB or if the address of
the load is unknown, wait!

Load-Store Queues

In practice, the memory part of the ROB is implemented
separately and is called a Load-Store Queue (in turn, usually
implemented as a Load and a Store queues)

ROB |:> ROB

(Correct) Actual Memory Path

Memory accesses

are still out of order
Loads are performed immediately

but we must associatively check in the ROB
that there are no new stores pending!

CPU

Reorder
Buffer

* Now we do honour RAW dependencies and uniprocessor consistency is correctly implemented
» Still, other processors do not have such a bypass...

[- Uniprocessor memory accesses out of order = no sequential consistency]

More Challenges to Sequential Consistency?

 Consider a normal system with caches and using a simple invalidate snooping protocol

CPU 1 may be reading B before
Cache 1 has received the invalidate

WR from Cache 2 for B
CPU 1 A=o0 message
j— \ >
- \
CPU 2 =0 | B
- , >
i i Sent E i i E
Cache 1 E | Invalidate : E E ¢
. O—_—*—Q—)
i 5 : _ i 5 - Same for CPU 2
Cache 2 | ! i ,ﬁ?,:ﬁ::i : i : e reading A
_. O %‘H—)
Mem i s i e '
@ @ —@ @

\

How to Get Sequential Consistency

* A easy but naive fix: wait for the acknowledgement of the invalidation and do not start

a new memory operation until you have it Cache 1 waits to perform the read
until after the write invalidation is

acknowledged by Cache 2

CPU 1 A=0 A=1 B ==0? / (= globally visible)
—‘. -. _. >
WR WR RD /
Cache 2 gets an CPU2 ==0 ! B=1 ! , A== 07 R
-. . —-‘. : _". >
acknowledgement | ; L : ¢ f i
of the invalidation \ i Same for Cache 2
from Cache 1 Cache 1l : L
Cache 2 i !5

Performance?!

Relaxing Write = Read Order:
Processor Consistency Model

* Exposes write buffers to the programmer (and thus grants the possibility to the architect to improve
performance)

Processor or Processor or
Thread #1 Thread #2
A=0; NOV;\I wehaccept B = 0:;
that this is
<= ossible!
A=1; > P . B =1;
if (B ==) T.. if (A== 0)

We now admit that both tests can be true at once (Read advanced over independent Write)

e Still, we enforce write order so that the values of A and B will eventually be both 1 (in some
unspecified future)

* |A-32 and some other processors (IBM 370) implement this model

Many Relaxed Consistency Models

 The goal is to choose consistency models which are efficiently implementable but do not “surprise too
much” programmers

» Different combinations on what can be disordered (W=>R, W=>W, R>W, R=>R,...) and other details
e Wisconsin/Stanford processor consistency
* |IBM 370
* Intel IA-32
e Sun Total Store Order
* USC/Rice weak ordering
e Stanford release consistency
 DEC Alpha
* |IBM PowerPC
* Sun’s Relaxed Memory Order

* Only system programmers (OS, libraries, middleware) typically see these details and act on them to
implement higher level functions, uniform across all or most systems

Relax Everything:
Release Consistency Model

* Still honour every dependence locally in a processor, but otherwise
completely disregard ordering across normal loads and stores

* Introduce special synchronization operations that have strict ordering

— Typically some instruction are used to acquire access (S,) to a shared variable and
enforce the orderings S,=»W and S, R, while other instructions are used to
release access (Sg) to a shared variable and enforce the orderings W-=>S; and R=>S;

— Another approach is to have memory barriers or fences (S) that act like S,+S; and
enforce all orderings W—=2S, R=2S, S2W, and SR (i.e., the execution of a memory
barrier waits for all pending loads and stores to complete and be globally visible,
and does not let any successive load or store start).

* Put the burden on the programmer/compiler and be as aggressive as you
can in the hardware

Memory Barriers / Fences

Processor or

Processor or
Thread #2

Thread #1
This store
should not be
advanced! data = new;
membar €
SPARC flag = 1;
Processors

while
membar

data copy =

A store-only barrier

\\data = new;
SFENCE // WOW

flag = 1;

X86
processors

A load-only barrier

while (flag
LFENCE //
data copy =

A generic
barrier

This load
== 0); should not be

advanced!
data;
—— O) ;
R2>R
data;

Atomic Instructions

Combinations of load and store without interference from others
A typical way to implement acquire access

Test-and-set: interchanges a fixed value for a value in memory

Atomic exchange or swap: interchanges a value in a register for a value in
memory

Compare-and-swap: compare a register value to a value in memory
addressed by another register, and if they are equal, then swap a third
register value with the one in memory

Good because it writes only if the comparison is successful
Bad because it needs three source registers

—==

RISC-V: Load-Reserved/Store-Conditional

Behaves like a normal load but

o A . /I k sets a reservation on M[a0];
CC]Ulre aCCess/Ioc — expects to be followed by an sc.w

1i to, 1 # t0 = 1 = locked value; 0 = unlocked

again: lr.w t1, (a@) # load-reserved to read lock
bnez tl1, again # try again if someone else has the lock
sc.w t2, to, (a0) # attempt to store t0@ in the lock
bnez t2, again # try again if store fails = someone took it

locked: # lock acquired: S,»W and S,2R

sc.w t2, to, (a@)islikesw t0, 0(a0) but
(i) does not store if M[a@] has changed since the last 1r.w and
(ii) returns nonzero in t2 if it fails to store

e Release access/lock

Sw zero, 0(a0) # free lock by writing © = unlocked

Consistency is Hard!

* Memory Consistency is Hard

— Subtle interactions between hardware optimizations (e.g., store buffers,
reordering) and memory models make reasoning about correctness challenging

* Code is Subtly Processor-Dependent

— Programs can behave differently based on the processor’s memory consistency
model (e.g., x86 vs ARM), requiring careful design for portability

* Simplified for Software Programmers

— To shield developers, consistency mechanisms are encapsulated in
» System libraries (e.g., synchronization primitives, atomics)
* APIs (e.g., C++ std::atomic, pthreads, Java volatile)

— These APIs are simple, intuitive, and uniform across platforms while hiding
processor-specific details

Multiprocessors

Multiprocessors have come to the consumer market and are here to stay

Peculiar multiprocessors (e.g., heterogeneous) have been for many years in high-end
embedded systems

They can usually take advantage of most of the progress in uniprocessor design and
performance optimization

Yet, they involve major challenges when it comes to preserve the multithreaded
performance of uniprocessors (interconnection, coherence, consistency, etc.)

Scalability is one of the greatest architectural issues of the future

References

e Patterson & Hennessy, COD — RISC-V Edition

— Sections 2.11 (Synchronization)
— Sections 5.10 (Parallelism and Memory Hierarchy)

	CS-200�Computer Architecture�—�Part 5c. Multiprocessors�Memory Consistency
	Coherence? Consistency?
	What about Consistency?
	Ideally: Strict Consistency
	More Practical: Sequential Consistency
	Sequential Consistency
	Ordering?
	Reordering Instructions �at Writeback
	Actual Memory Path
	(Correct) Actual Memory Path
	Dependences through Memory
	Load-Store Queues
	(Correct) Actual Memory Path
	More Challenges to Sequential Consistency?
	How to Get Sequential Consistency
	Relaxing Write  Read Order:�Processor Consistency Model
	Many Relaxed Consistency Models
	Relax Everything:�Release Consistency Model
	Memory Barriers / Fences
	Atomic Instructions
	RISC-V: Load-Reserved/Store-Conditional
	Consistency is Hard!
	Multiprocessors
	References

