
1

CS-200
Computer Architecture

—
Part 5c. Multiprocessors

Memory Consistency

Paolo Ienne
<paolo.ienne@epfl.ch>

Some slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Reinhardt, Smith, and Singh
of University of Illinois, EPFL, Carnegie Mellon University, University of Wisconsin, Duke University, University of Michigan, and Princeton University

2

Coherence? Consistency?

Informally:

• Coherence
– What values should be returned by a set of reads and writes to a single address
– An issue of data integrity: if violated, I get wrong data

• Consistency
– When written values will be returned by reads to multiple addresses
– Not an issue of data integrity: data are correct from the perspective of single processors, but

observations from different processors may show different orderings and contradict the
expectations of the programmer

Examples in the following will help clarify the distinction…

3

What about Consistency?

• Can both tests be true? Not really…
• Note that this is not a problem of accesses to a single location (coherence) but of the interaction of

several accesses to more than one location
• It is also the problem of when a new value must be visible

A = 0;
…
A = 1;
if (B == 0) …

Processor or
Thread #1

B = 0;
…
B = 1;
if (A == 0) …

Processor or
Thread #2

4

Ideally: Strict Consistency

• Everything happens in memory exactly in the order it has been issued

• But in any distributed system is (virtually) impossible to obtain a global time, hence
let’s forget about it…

WR
A = 0

WR
A = 1

RD
B == 0?

RD
A == 0?

WR
B = 0

WR
B = 1

CPU 1

CPU 2

Mem

5

More Practical: Sequential Consistency
Sequential Consistency: the result of any execution is as if
• the operations of each individual processor were executed the order specified by its program, and
• the operations of the different processors were arbitrarily interleaved

WR
A = 0

WR
A = 1

RD
B == 0?

RD
A == 0?

WR
B = 0

WR
B = 1

CPU 1

CPU 2

Mem

Note that this is sufficient to
maintain the intuition that A

and B cannot be 0 at once

6

Do they?!

Sequential Consistency

1. Processors load and store in program order
2. Access to memory are atomic (no other memory operation is started while the previous has not

completed)
3. After every memory operation, the switch is randomly changed

Memory

CPU CPU CPU CPU

7

Register File

Stores
are committed

in order

Ordering?

Instruction
Fetch & Decode

Unit

Reservation
Stn.

Load/Store
UnitFP UnitALU

Commit
Unit

Branch
Unit

Reservation
Stn.

Reservation
Stn.

Reservation
Stn.

Machine state is
updated in order

Computation advances independently
from machine state updates

8

to MEM
and RF

from
F&D Unit

0
0
0
1
0
0

Register Address ValueTag

from EUs

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

head

tail

0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

Reordering Instructions
at Writeback

The destination in memory
of the result

The result,
once available

9

Actual Memory Path

• Is there a mistake? Yes, we have badly violated consistency even on a uniprocessor: the relative order of
read and writes is now possibly wrong!

L1 $CPU

Loads are performed immediately
(no change in the architectural state)

Reorder
Buffer

Stores are performed in program order
(they do change the architectural state)

Memory accesses
are out of order

1
0

(Correct) Actual Memory Path

• Now we do honour RAW dependencies and uniprocessor consistency is correctly implemented
• Still, other processors do not have such a bypass...
• Uniprocessor memory accesses out of order  no sequential consistency

L1 $CPU

Reorder
Buffer

Loads are performed immediately
but we must associatively check in the ROB

that there are no new stores pending!

Memory accesses
are still out of order

1
1

Implements the multiplexer in
the slide before

Dependences through Memory

The way we detect and resolve dependences through memory (a store at
some address and a subsequent load from the same address) is the same as
for registers
For every load, check the ROB:
a) If there is no store to the same address in the ROB, get the value from

memory (i.e., from the cache)
b) If there is a store to the same address in the ROB, either get the value (if

ready) or the tag
but there is an additional situation now

c) If there is a store to an unknown address in the ROB or if the address of
the load is unknown, wait!

1
2

Load-Store Queues

In practice, the memory part of the ROB is implemented
separately and is called a Load-Store Queue (in turn, usually

implemented as a Load and a Store queues)

ROB ROB

LQ

SQ

1
3

(Correct) Actual Memory Path

• Now we do honour RAW dependencies and uniprocessor consistency is correctly implemented
• Still, other processors do not have such a bypass...
• Uniprocessor memory accesses out of order  no sequential consistency

L1 $CPU

Reorder
Buffer

Loads are performed immediately
but we must associatively check in the ROB

that there are no new stores pending!

Memory accesses
are still out of order

1
4

More Challenges to Sequential Consistency?

• Consider a normal system with caches and using a simple invalidate snooping protocol

CPU 1

CPU 2

Cache 1

Cache 2

Mem

WR
B = 1

RD
A == 0?

WR
A = 1

WR
B = 0

Received
Invalidate

WR
A = 0

Sent
Invalidate

RD
B == 0?

CPU 1 may be reading B before
Cache 1 has received the invalidate

message from Cache 2 for B

Same for CPU 2
reading A

1
5

How to Get Sequential Consistency

• A easy but naïve fix: wait for the acknowledgement of the invalidation and do not start
a new memory operation until you have it

CPU 1

CPU 2

Cache 1

Cache 2

WR
B = 0

WR
A = 0

RD
B == 0?

RD
A == 0?

WR
B = 1

WR
A = 1

Cache 2 gets an
acknowledgement
of the invalidation

from Cache 1

Cache 1 waits to perform the read
until after the write invalidation is

acknowledged by Cache 2
(= globally visible)

Performance?!

Same for Cache 2

1
6

Relaxing Write  Read Order:
Processor Consistency Model

• Exposes write buffers to the programmer (and thus grants the possibility to the architect to improve
performance)

• We now admit that both tests can be true at once (Read advanced over independent Write)
• Still, we enforce write order so that the values of A and B will eventually be both 1 (in some

unspecified future)
• IA-32 and some other processors (IBM 370) implement this model

A = 0;
…
A = 1;
if (B == 0) …

Processor or
Thread #1

B = 0;
…
B = 1;
if (A == 0) …

Processor or
Thread #2

Now we accept
that this is
possible!

1
7

Many Relaxed Consistency Models
• The goal is to choose consistency models which are efficiently implementable but do not “surprise too

much” programmers
• Different combinations on what can be disordered (WR, WW, RW, RR,…) and other details

• Wisconsin/Stanford processor consistency
• IBM 370
• Intel IA-32
• Sun Total Store Order
• USC/Rice weak ordering
• Stanford release consistency
• DEC Alpha
• IBM PowerPC
• Sun’s Relaxed Memory Order
• …

• Only system programmers (OS, libraries, middleware) typically see these details and act on them to
implement higher level functions, uniform across all or most systems

1
8

Relax Everything:
Release Consistency Model

• Still honour every dependence locally in a processor, but otherwise
completely disregard ordering across normal loads and stores

• Introduce special synchronization operations that have strict ordering
– Typically some instruction are used to acquire access (SA) to a shared variable and

enforce the orderings SAW and SAR, while other instructions are used to
release access (SR) to a shared variable and enforce the orderings WSR and RSR

– Another approach is to have memory barriers or fences (S) that act like SA+SR and
enforce all orderings WS, RS, SW, and SR (i.e., the execution of a memory
barrier waits for all pending loads and stores to complete and be globally visible,
and does not let any successive load or store start).

• Put the burden on the programmer/compiler and be as aggressive as you
can in the hardware

1
9

Memory Barriers / Fences

data = new;
membar
flag = 1; while (flag == 0);

membar
data_copy = data;

Processor or
Thread #1

Processor or
Thread #2

SPARC
processors

A generic
barrier

data = new;
SFENCE // WW
flag = 1; while (flag == 0);

LFENCE // RR
data_copy = data;

x86
processors

A store-only barrier

A load-only barrier

This store
should not be

advanced!
This load

should not be
advanced!

2
0

Atomic Instructions

• Combinations of load and store without interference from others
• A typical way to implement acquire access

• Test-and-set: interchanges a fixed value for a value in memory
• Atomic exchange or swap: interchanges a value in a register for a value in

memory
• Compare-and-swap: compare a register value to a value in memory

addressed by another register, and if they are equal, then swap a third
register value with the one in memory

Good because it writes only if the comparison is successful
Bad because it needs three source registers

2
1

RISC-V: Load-Reserved/Store-Conditional

• Acquire access/lock

• Release access/lock

li t0, 1 # t0 = 1 = locked value; 0 = unlocked
again: lr.w t1, (a0) # load-reserved to read lock

bnez t1, again # try again if someone else has the lock
sc.w t2, t0, (a0) # attempt to store t0 in the lock
bnez t2, again # try again if store fails = someone took it

locked: # lock acquired: SAW and SAR

sw zero, 0(a0) # free lock by writing 0 = unlocked

Behaves like a normal load but
sets a reservation on M[a0];

expects to be followed by an sc.w

sc.w t2, t0, (a0) is like sw t0, 0(a0) but
(i) does not store if M[a0] has changed since the last lr.w and

(ii) returns nonzero in t2 if it fails to store

2
2

Consistency is Hard!

• Memory Consistency is Hard
– Subtle interactions between hardware optimizations (e.g., store buffers,

reordering) and memory models make reasoning about correctness challenging

• Code is Subtly Processor-Dependent
– Programs can behave differently based on the processor’s memory consistency

model (e.g., x86 vs ARM), requiring careful design for portability

• Simplified for Software Programmers
– To shield developers, consistency mechanisms are encapsulated in

• System libraries (e.g., synchronization primitives, atomics)
• APIs (e.g., C++ std::atomic, pthreads, Java volatile)

– These APIs are simple, intuitive, and uniform across platforms while hiding
processor-specific details

2
3

Multiprocessors

• Multiprocessors have come to the consumer market and are here to stay
• Peculiar multiprocessors (e.g., heterogeneous) have been for many years in high-end

embedded systems
• They can usually take advantage of most of the progress in uniprocessor design and

performance optimization
• Yet, they involve major challenges when it comes to preserve the multithreaded

performance of uniprocessors (interconnection, coherence, consistency, etc.)
• Scalability is one of the greatest architectural issues of the future

2
4

References

• Patterson & Hennessy, COD – RISC-V Edition
– Sections 2.11 (Synchronization)
– Sections 5.10 (Parallelism and Memory Hierarchy)

	CS-200�Computer Architecture�—�Part 5c. Multiprocessors�Memory Consistency
	Coherence? Consistency?
	What about Consistency?
	Ideally: Strict Consistency
	More Practical: Sequential Consistency
	Sequential Consistency
	Ordering?
	Reordering Instructions �at Writeback
	Actual Memory Path
	(Correct) Actual Memory Path
	Dependences through Memory
	Load-Store Queues
	(Correct) Actual Memory Path
	More Challenges to Sequential Consistency?
	How to Get Sequential Consistency
	Relaxing Write  Read Order:�Processor Consistency Model
	Many Relaxed Consistency Models
	Relax Everything:�Release Consistency Model
	Memory Barriers / Fences
	Atomic Instructions
	RISC-V: Load-Reserved/Store-Conditional
	Consistency is Hard!
	Multiprocessors
	References

